						92.00
-	■ R	oll No. :	Napopa napanana		Total Printed Pag	ges: 4
			5E311	1		
•	В	. Tech. (Sem. V) (Main/Back) E	 xaminatio	n, December	- 2013
	E	lectronics & Co	mmunication		,	
	5	EC5 Microwave	Engg I			
Tim	ne : 3 F	lours]		1]	Total Min. Passing M	Marks : 80 Marks : 24
At	$rac{All}{she}$	any five quest questions carry own wherever no e assumed and calc	y equal marks. ecessary. Any c	Schemati data you j Units o	c diagrams feel missing f quantities	must be suitably
		llowing supporting ed in form No. 20	9 355 351 154	mitted durin	ig examination	٦.
1		NIL	<u>*</u>	2	NIL	
		75	UNIT -	I		
1	(a)	Start from Maxwell's equations derive the electric field E_x and E_y for a rectangular wave guide when a TE mode field is propagating in 2-direction assume the cross section of the waveguide is a×b m^2 .				
						12
	(b)	Draw the mag TE ₁₁ mode.	netic field lines	on the top	surface for	TE_{20} and
			8			4
			OR			
1	(a)	Explain the re	easons for		ž.	
		(i) TEM more	de not possible	in rectai	onlar wave	enide

4×2=8

Why phase and group velocity are not same in waveguide.

5E3111]

(ii)

[Contd...

(b) Find the group and phase velocity for a waveguide having cross section (4mm \times 6mm) and filled with a dielectric material with $E_r=10$ and $H_r=1$.

8

UNIT - II

- 2 Draw the structure for a
 - (i) Wave guide bend with minimum reflection at corner.
 - (ii) Two-hole coupled directional coupler.
 - (iii) Rat-race structure and
 - (iv) Dielectric attenuator.

 $4 \times 4 = 16$

OR

- Find the S-parameter for a
 - (i) E-plane Tee
 - (ii) Circulator
 - (iii) H-Plane Tee and
 - (iv) Magic Tee

 $4 \times 4 = 16$

UNIT - III

- Find the expression for current across a catcher cavity in twocavity klystron. Also deduce the expression for
 - (i) depth of modulation
 - (ii) bunching parameter

 $12+2\times2=16$

OR

2

5E3111]

[Contd...

3 A four cavity cw Klystron amplifier has

Beam voltage = 20 kV

Beam current = 2.00 mA

Gap distance = 0.5 cm

Operating frequency f = 12.5 GHz

Signal voltage $\vartheta_i = 5$ volt (rms)

Coupling coefficient = 0.6

dc beam current density $\rho = 10^{-6} \text{ c/m}^3$

Find:

- (i) Plasma frequency
- (ii) Transit time across input gap
- (iii) DC velocity of electron
- (iv) Phase constants.

 $4 \times 4 = 16$

UNIT - IV

- 4 Draw the construction of a TWT with helix type slow wave structure. Draw the diagram for bunching process in it and explain the role of
 - (i) Slow wave structure and
 - (ii) DC-Magnetic field in axial directionin in it.

 $6+6 + 2 \times 2 = 16$

OR

A TWT has following characteristic

Beam voltage = 8 kV

Beam current = 2 mA

Circuit length N = 40

Frequency = 4 GHz

 $Z_0 = 20 \Omega$

Find:

- (i) gain parameter C and
- (ii) Power gain in dB.

 $2 \times 8 = 16$

[Contd...

UNIT - V

- Give the total classification of various magnetron and give 5 their comparison table.
 - . 8

- An α -band magnetron has (b) Anode voltage $V_o = 30 \text{ kV}$ Beam current $I_o = 20A$ Magnetic flux density B $_{o}$ = 0.336 wb/m^{2} Cathode radius a = 2 cm radius of vane edge to center b = 4 cm Find:
 - cyclotron Angular frequency (i)
 - (ii) cutoff voltage for a fixed B_o.

8

OR

- Explain the working of a cylindrical magnetron and find expression 5 for
 - cyclotron frequency and (i)
 - electronic efficiency of it. (ii)

 $8 \times 2 = 16$

